???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: http://tede2.uefs.br:8080/handle/tede/1565
???metadata.dc.type???: Dissertação
Title: Adaptação do algoritmo genético NSGA-DO à problemas de otimização multiobjetivo estáticos e dinâmicos
???metadata.dc.creator???: Machado, Jussara Gomes 
???metadata.dc.contributor.advisor1???: Pires, Matheus Giovanni
???metadata.dc.description.resumo???: Algoritmos Evolutivos (AEs) são ´uteis na resolução de Problemas de Otimzação Multiobjetivo (MOOPs) por possibilitar encontrar distintas soluções com diferentes compensações para os objetivos. Uma classe de AEs são os Algoritmos Genéticos (AGs), que utilizam técnicas de busca e otimização paralela baseadas na seleção natural e reprodução genética. Um AG comumente aplicado na resolução de MOOPs, artificiais e do mundo real, ´e o NSGA-II, que, por vezes, ´e utilizado como base no desenvolvimento de outros algoritmos, como o NSGA-DO. O campo da Otimização Multiobjetivo (MOO) se apresenta consolidado, atualmente temos diferentes benchmarks, métricas de desempenho e AEs eficientes. Porém, sobre esse ´ultimo, o que se observa ´e que o desempenho dos algoritmos ´e proporcional a sua complexidade, o que induz pesquisadores de outros campos a continuar preferindo oNSGA-II. Ainda, o interesse pela Otimização Dinâmica Muitiobjetivos (DMOO), em que o ambiente se modifica ao longo do tempo, se intensificou somente nos ´ultimos anos e muitos são os desafios desse emergente campo de pesquisa. Sobre o NSGA-DO, o mesmo propõe modificações em parte do NSGA-II, e mesmo tendo mostrado desempenho superior em outros campos, o algoritmo não apresenta resultados satisfatórios quando aplicado a MOOPs contínuos. Nesse contexto, reconhecendo a simplicidade e potencial do recente algoritmo, assim como a necessidade de avan¸cos no campo da DMOO, o objetivo dessa pesquisa foi o desenvolvimento de melhorias ao NSGA-DO, assim como, a elucidação de questões importantes relacionadas ao campo da DMOO. A metodologia aqui adotada foi dividida em duas fases parcialmente intercaladas. Na primeira fase, classificada como uma pesquisa bibliográfica descritiva, estudos de revisão publicados no campo da DMOO foram identificados, descritos e analisados. Na segunda fase, classificada como uma pesquisa experimental explicativa, a estrat´egia evolutiva do NSGA-DO foi investigada e melhorias foram aplicadas. Como resultado da análise dos estudos pode-se perceber que os principais desafios do campo da DMOO giram em torno da detecção de mudanças e da resposta `as mudanças. Nesse processo, um DMOA (Algoritmo Multiobjetivo Dinâmico) enfrenta dificuldades relacionadas `a preservação da diversidade, convergência considerando o novo ambiente e recupera¸c˜ao de poss´ıveis solu¸c˜oes invi´aveis. Sobre a experimenta- ¸c˜ao, as modifica¸c˜oes aplicadas ao NSGA-DO resultaram em um novo AG, o Modiiii fied NSGA-DO (MNSGA-DO), que supera o NSGA-DO e at´e mesmo o NSGA-II em problemas com diferentes caracter´ısticas. Tamb´em, um variante dinˆamico do MNSGA-DO foi proposto, o Dynamic MNSGA-DO (D-MNSGA-DO), o qual obteve um desempenho satisfat´orio, conseguindo rastrear e responder `as mudan¸cas de ambiente. Com os resultados obtidos, pode-se concluir que o presente estudo alcan¸cou seus objetivos ao propor um novo AG de estrat´egia simples e apto a resolver MOOPS e DMOPs, assim como apresentou um compilado dos estudos de revisão publicados ao longo dos anos, estes no campo da DMOO.
Abstract: Evolutionary Algorithms (EAs) are useful in solving Multi-Objective Optimization Problems (MOOPs) because they allow finding different solutions with different compensations for the objectives. One class of EAs are Genetic Algorithms (GAs), which use parallel search and optimization techniques based on natural selection and genetic reproduction. A GA commonly applied in the resolution of MOOPs, both artificial and in the real world, is the NSGA-II, which is sometimes used as a basis for the development of other algorithms, such as the NSGA-DO. The field of Multi-objective Optimization (MOO) is consolidated, we currently have different benchmarks, performance metrics and efficient AEs. However, regarding the latter, what is observed is that the performance of the algorithms is proportional to their complexity, which induces researchers from other fields to continue to prefer the NSGA-II. Furthermore, interest in Multi-objective Dynamic Optimization (DMOO), in which the environment changes over time, has intensified only in recent years and there are many challenges in this emerging field of research. Regarding the NSGA-DO, it proposes modifications in part of the NSGA-II, and even having shown superior performance in other fields, the algorithm does not present satisfactory results when applied to continuous MOOPs. In this context, recognizing the simplicity and potential of the recent algorithm, as well as the need for advances in the field of DMOO, the objective of this research was the development of improvements to NSGA-DO, as well as the elucidation of important issues related to the field of DMOO. The methodology adopted here was divided into two phases partially interspersed. In the first phase, classified as a descriptive bibliographical research, review studies published in the field of DMOO were identified, described and analyzed. In the second phase, classified as an explanatory experimental research, the evolutionary strategy of the NSGA-DO was investigated and improvements were applied. As a result of the analysis of the studies, it can be seen that the main challenges in the field of DMOO revolve around detecting changes and responding to changes. In this process, a DMOA (Dynamic Multi-objective Algorithm) faces difficulties related to the preservation of diversity, convergence considering the new environment and recovery of possible unfeasible solutions. On experimentation, the modifications applied to NSGA-DO resulted in a new GA, Modified NSGA-DO (MNSGA-DO), which i surpasses NSGA-DO and even NSGA-II in problems with different characteristics . Also, a dynamic variant of MNSGA-DO was proposed, the Dynamic MNSGA-DO (D-MNSGA-DO), which achieved satisfactory performance, managing to track and respond to changes in the environment. With the results obtained, it can be concluded that the present study achieved its objectives by proposing a new GA with a simple strategy and able to solve MOOPS and DMOPs, as well as presenting a compilation of review studies published over the years, these in the field from DMOO
Keywords: Otimização multiobjetivo
Otimização multiobjetivo dinâmica
Algoritmos genéticos
Multi-objective Optimization
Dynamic Multi-Objective Optimization
Genetic Algorithms
???metadata.dc.subject.cnpq???: CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Language: por
???metadata.dc.publisher.country???: Brasil
Publisher: Universidade Estadual de Feira de Santana
???metadata.dc.publisher.initials???: UEFS
???metadata.dc.publisher.department???: DEPARTAMENTO DE TECNOLOGIA
???metadata.dc.publisher.program???: Programa de Pós-Graduação em Ciência da Computação
Citation: MACHADO, Jussara Gomes. Adaptação do algoritmo genético NSGA-DO à problemas de otimização multiobjetivo estáticos e dinâmicos, 2023, 122f., Dissertação (Mestrado em Ciência da Computação), Programa de Pós-Graduação em Ciência da Computação, Universidade Estadual de Feira de Santana, Feira de Santana.
???metadata.dc.rights???: Acesso Aberto
URI: http://tede2.uefs.br:8080/handle/tede/1565
Issue Date: 27-Feb-2023
Appears in Collections:Coleção UEFS

Files in This Item:
File Description SizeFormat 
Dissertacao - Jussara_Gomes_Machado.pdfDissertação - Jussara Gomes Machado8.68 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.