@MASTERSTHESIS{ 2019:659826057, title = {Detecção automática de glomérulos em imagens histológicas renais digitais}, year = {2019}, url = "http://tede2.uefs.br:8080/handle/tede/1342", abstract = "As glomerulopatias, doenças renais, acometem milhares de pessoas no Brasil e no mundo e este número vem crescendo. Os glomérulos são estruturas microscópicas presentes nos rins e sua análise por um médico patologista é o que determina o tipo e o grau da doença renal. Imagens dos tecidos renais podem ser digitalizadas ou fotografadas, o que torna possível o processamento por computador. Atualmente, a detecção e a separação de glomérulos é feita manualmente pelo patologista. Assim, esta pesquisa tem como objetivo propor um método de detecção automático de glomérulos em imagens histológicas renais digitais. Para isso, foram utilizadas técnicas de aprendizagem profunda a fim de treinar modelos que fossem capazes de automatizar esta tarefa. Imagens digitais de lâminas histológicas fotografadas em variadas escalas de aproximação foram utilizadas para compor os datasets de treinamento e testes. O framework Tensorflow Object Detection API foi utilizado como plataforma de implementação no treinamento e testes dos modelos SSD Inception V2 e Faster RCNN Inception V2. Obteve-se 0.8831 mAP e 0.94 F1 Score utilizando o modelo SI2, e 0.8723 mAP e 0.97 F1 Score utilizando o modelo FRI2. O modelo SI2 é o mais eficiente para esta tarefa, já que é 64% mais rápido no tempo necessário para o treinamento e 98% mais rápido na detecção de glomérulos em cada imagem. Este trabalho demonstra a eficiência do Deep Learning na resolução deste problema, avançando no aperfeiçoamento das técnicas de detecção automática de glomérulos.", publisher = {Universidade Estadual de Feira de Santana}, scholl = {Mestrado em Computação Aplicada}, note = {DEPARTAMENTO DE CIÊNCIAS EXATAS} }